
Hematology & Hemotherapy Journal

Henry Publishing Group
© Fuchs O 2016

Volume: 1 | Issue: 1 | 100001
ISSN: HJHH

1 of 13

Fuchs O, J Hematol Hemother 2016 1: 001

Review Article

Introduction
	 Myelodysplastic Syndromes (MDS) are a heterogeneous group 
of clonal Hematopoietic Stem Cell (HSC) disorders characterized by 
ineffective hematopoiesis, peripheral cytopenias, frequent karyotypic  
abnormalities and risk of transformation to Acute Myeloid  
Leukemia (AML) [1-10]. The first MDS classification, the 
French-American-British (FAB) classification, published 33 years 
ago allowed scientific research of this disease [11]. FAB group system 
was modified and further defined to recognize and classify distinct 
sub-categories of MDS based on genetic features.

	 Chronic Myelomonocytic Leukemia (CMML) has long been 
recognized as a distinct clinico-pathological entity with features of 
both myelodysplastic and myeloproliferative syndromes resulting in 
different clinical presentations [12,13]. FAB group system classified  
CMML as part of MDS, given the morphologic evidence of  
dysplastic hematopoiesis. The FAB Group later proposed a  
reclassification of CMML patients into two subtypes based on White 
Blood Cell (WBC) count at diagnosis [14]. Patients with WBC counts 
of < 13x109/L were considered to have myelodysplastic CMML 
(MD-CMML) and those with > 13x109/L were considered to have 
myeloproliferative CMML (MPO-CMML). However, the two groups 
have overlapping features. Voglova et al., [15] analyzed 69 patients  
with CMML, 31 (45%) classified as MD-CMML and 38 (55%)  
classified as MP-CMML. Cytogenetic abnormalities were more  
frequent among MP-CMML patients. The median Overall  
Survival (OS) was significantly longer in the MD-CMML patients 
than in the MP-CMML group (30 vs. 16 months, respectively;  
p value < 0.01) and there was no significant difference in  
leukemic transformation. Over the course of disease, WBC count in 
24 MD-CMML patients increased to more than 13x109/L. Therefore, 
MD-CMML and MP-CMML should be considered as different stages  
of the same disease. World Health Organization (WHO) in 2002  
recognized CMML as a distinct entity and moved it to a new category 
called MDS/MPD [16]. WHO classification differentiates CMML-1 
and CMML-2 according to blast procentages and more recently also 
CMML-0 with less than 5% medullary blasts [17].

	 Both, WHO classification and criteria for MDS are shown in  
Table 1 [18]. Using the International Prognostic Scoring System 
(IPSS), MDS is classified into low, intermediate-1, intermediate-2 
and high-risk for progression towards AML [19]. Despite increasing  
insight into the tumor biology of MDS, the etiology of these  
syndromes remains undetermined. However, there is increasing  
evidence that cytopenia in MDS may, at least in part, be due to  
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Abstract
	 Recent clinical and molecular studies of Myelodysplastic  
Syndrome (MDS) showed the contribution of abnormal activa-
tion of innate immune signals and associated inflammation to 
the pathogenesis of MDS. The presence of abnormal levels of  
cytokines, chemokines and growth factors (tumor necrosis factor  
alpha /TNF-α/, interferon gamma /IFN-γ/, transforming growth  
factor beta, myeloid growth factors /G-CSF and GM-CSF/, interleu-
kin (IL)-6, IL-8) in the peripheral blood and in bone marrow of MDS 
patients has been described. These levels depend on analyzed 
MDS subtypes. Toll-Like Receptors (TLRs) and multiple downstream 
signaling mediators are overexpressed in MDS. NF-κB transcription  
factors are activated in response to inflammatory cytokines,  
pathogenic antigens, oxidative stress, DNA damage and the  
activation of pattern recognition receptors. Mesenchymal Stem Cells 
(MSCs) are primitive, non-hematopoietic stem cells that give rise 
to all of the various types of stromal cells that form bone marrow  
microenvironment (niche). The immunosuppressive capacity of 
MSCs is decreased in cells from low risk MDS. MDS-derived MSCs 
and bone marrow stromal cells are determinants of the fate of  
hematopoietic progenitors and have an important role in patho-
genesis of MDS. Myeloid-Derived Suppressor Cells (MDSCs) are  
inflammatory and immunosuppressive effectors localized to the bone 
marrow that express the immune receptor CD33. MDS patients have 
increased numbers of MDSCs and they induce defects in myeloid 
and erythroid differentiation. Although hematopoietic cell transplan-
tation can be curative, additional therapies are needed. Investigat-
ing CD33-targeted therapies in MDS and Chronic Myelomonocytic 
Leukemia (CMML) patients is justified by high frequency of CD33 
expression. Blockade of immune checkpoints (programmed death-1 
and its two ligands and cytotoxic T-lymphocyte associated antigen 
4) can be a potential therapy in MDS and CMML patients. Bispecific  
Killer Cell Engager (BIKE) targeting CD16 expressed on effector  
natural killer cells and CD33 is able to facilitate elimination CD33+ 
MDS targets and immunosuppressive MDSC targets.
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lymphocyte-mediated myelosupression suggesting that dysregulated  
immune mechanisms may be involved in the pathogenesis of  
MDS [20]. This hypothesis is supported by frequent association 
of MDS and CMML with clinical manifestations of Autoimmune  
Disorders (AD) and inflammatory response of the immune system 
[12,20,21-53]. Epidemiologic studies demonstrated that AD patients  
(suffering from rheumatoid arthritis, Sjӧgren syndrome, lupus  
erythematosus, seronegative arthritis, panarteritis nodosa, autoim-
mune hemolysis and pernicious anemia) have a higher risk to develop 
MDS or AML compared to general population [45].

The Immune System Defects in Myelo-
dysplastic Syndromes
	 Aberrant immunity, including abnormal immune cells and  
molecules, contributes to the development of MDS. Various immune 
molecules, including Interferon-γ (IFN-γ), Tumour Necrosis Factor-α 
(TNF-α) and Interleukins (ILs), produced by Antigen-Presenting Cells 
(APCs) and T lymphocytes generate a cytokine milieu that can lead to 
the destruction of HSCs. The excessive apoptosis was largely cytokine  
mediated with a number of proinflammatory and proapoptotic  
cytokines such as TNF-α, Transforming Growth Factor- β (TGF-β), 
and Interleukin 1β (IL1β) being overexpressed in the marrows of  

MDS patients. Stem/progenitor cells are impaired by these factors 
and exhibit marked deficiencies in proliferation and differentiation, 
high levels of apoptosis and dysfunctional responses to growth factor  
stimulation [42,54-56]. Overexpression of immune-related genes is 
widely reported in MDS [52]. Hyperactivation of innate immune/Toll-
Like Receptor (TLR) signaling was described in MDS [50,53,57-60]. 
The innate immunity system is a conserved host defence mechamism 
that detects and eliminates pathogens [61,62]. Signals are mediated 
via downstream signaling mediators and eventually lead to activation 
of key intracellular molecular effectors such as transcription factor  
NF-кB and Mitogen-Activated Protein Kinases (MAPK). The  
resulting immune responses, including release of inflammatory  
cytokines, cause elimination of pathogens. Innate immunity responses 
are mediated by phagocytes such as macrophages and dendritic cells. 
However, TLR on hematopoietic progenitor cells stimulate innate 
immune system replenishment [63,64] and may be involved in the 
pathogenesis of MDS [50,53,65-69].

	 MDS are characterized not only by abnormal HSCs and immune 
system defects but also by changes in the hematopoietic microenvi-
ronment (niche) [70-74]. The pathogenesis of MDS likely depends 
on the interaction between aberrant hematopoietic cells and their  
microenvironment. Chronic immune stimulation in combination  
with senescence –dependent changes was observed in both,  
Hematopoietic Stem/Progenitor Cells (HSPC) and niche and seems 
to be critical to the pathogenesis of the disease. Inflammatory  
processes are regulatory stimulus promoting the proliferation and 
apoptotic death of hematopoietic progenitors in MDS. Immune  
system dysregulation, as a key driver of the pathological evolution 
of MDS, includes cytokine milieu abnormalities and inflammatory  
alterations in natural killer cells, T cells, and Myeloid-Derived  
Suppressor Cells (MDSC).

	 A detailed understanding of these mechanisms, which contribute  
to the pathogenesis of MDS, may help to find and to define novel  
targets for diagnosis and therapy in this disease.

The Association between Autoimmune 
Diseases and Myelodysplastic Syn-
dromes
	 Immune and autoimmune biological anomalies have also been 
reported in MDS, such as the presence of antinuclear antibodies,  
antimitochondrial autoantibodies, Antineutrophil Cytoplasmic  
Autoantibodies (ANCA), autoantibodies rheumatoid factor, and  
cryoglobulins [32,75,76]. Approximately 10-30% of patients with 
MDS or CMML are associated with AD (Table 2), the most frequent 
being vasculitis, seronegative polyarthritis and specific skin lesions 
(Sweet´s syndrome, pyoderma gangrenosum) [21,23,26,43,76-84].  
Distribution of AD among MDS subtypes is controversial [45]. It 
seems that is more involved in Refractory Anemia with Excess Blasts 
(RAEB), a MDS subtype characterized by increased myeloblasts or 
the presence of Auer rods, where in one study 86% MDS patients is 
associated with AD and 52% MDS patients is without AD. In a series 
of 235 MDS patients, 46 (19.6%) patients displayed features of AD 
[85]. In this study, distribution of MDS subtypes was similar between 
MDS cohorts with and without AD. MDS patients with AD are mostly 
male (up to 70%) and of older age (mean 78-83% years), which may 
be somewhat different from AD observed in general population, that  

Classification Blood findings Bone marrow findings

Refractory cytopenia 
with unilineage of  
dysplasia (RCUD)

Unicytopenia or bicyto-
penia, No or rare blasts 

(<1%)

Unilineage dysplasia: 
>10% cells in one my-

eloid lineage

Refractory anemia (RA), 
refractory neutropenia 

(RN), refractory throm-
bocytopenia (RT)

<5% blasts; <15% of  
erythroid precursors are 

ring sideroblasts

Refractory anemia with 
ring sideroblasts (RARS) 

<5% blasts
Anemia, No blasts

> 15% of  erythroid 
precursors are ring 

sideroblasts Erythroid 
dysplasia only

Refractory cytopenia 
with multilineage dys-

plasia (RCMD) lineages 
<1x109/L monocytes

Cytopenia(s), No or rare 
blasts (<1%)
No Auer rods

Dysplasia in >10% of  
the cells in two or more 
myeloid <5% blasts in 
marrow ± 15% ring 

sideroblasts
No Auer rods

Refractory anemia 
with excess blasts-1 

(RAEB-1)
<1 x 109/L monocytes

Cytopenia(s), <5% blasts
No Auer rods

Unilineage or multilin-
eage dysplasia; 5%-9% 

blasts
No Auer rods

Refractory anemia 
with excess blasts-2 

(RAEB-2)
<1 x 109/L monocytes

Cytopenia(s), 5%-19% 
blasts

Auer rods±

Unilineage or multilin-
eage dysplasia; 10%-19% 

blasts
Auer rods±

Myelodysplastic 
syndrome -unclassified 

(MDS-U)
cell lineswhen accom-

panied by a cytogenetic 
abnormality considered 
as presumptive evidence 
for a diagnosis of  MDS 

<5% blasts

Cytopenias <1% blasts
Unequivocal dysplasia in 
<10% of  cells in one or 

more myeloid

MDS associated with 
isolated del(5q)
platelet count

Isolated del(5q) cytoge-
netic abnormality No 

Auer rods

Anemia Usually normal 
or increased hypolobated 
nuclei, No or rare blasts 

(<1%)

Normal to increased 
megakaryocytes with 

<5% blasts

Table 1: World Health Organization MDS Classification and Criteria (2008).

Adapted according Nybakken and Bagg [18]
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predominate in females and in younger patients. Apart from trisomy  
8 in patients with Behcet´s disease, frequently associated with 
MDS [81-83], there seems to be no significant association between  
karyotype and MDS associated with AD [45]. Distribution of MDS 
subtypes with del(5q) and del(7q)/ monosomy 7 are similar in  
association with AD or without AD. Association of MDS with  
vasculitis may independently predict adverse outcome [86]. Other AD  

do not influence outcome of MDS patients when associated with MDS 
[45].

	 A causal relationship is yet to be established between MDS and 
autoimmunity. The exact mechanism(s) underlying MDS and AD 
are not well established and are supposed to be related to immune  
dysfunction induced by MDS or by immunosuppressive therapy.  
Immune deregulation and synthesis of autoantibodies due to  
abnormalities in T and B cells with production of cytokines,  
defective macrophage clearance and neutrophil function, with  
subsequent   prolonged   circulation  of   immune  complexes and  
activation of  inflammatory mediators, reduced CD4 count, immature 
natural killer cells and impaired function of monocytes and dendritic  
cells with abnormal antigen presentation are observed. All these  
features may result from abnormal stimulation by dysplastic bone 
marrow stem cells [32,88-90]. Treatment options include treating 
both diseases concomitantly with 5-azacitidine [91,92].

T-cell and B-cell Abnormalities in MDS
	 The existence of functionally polarized human T cell responses 
based on their profile of cytokine secretion in both the CD4+ T helper  
(Th) and the CD8+ T cytotoxic cell subset has been established.  
Human Th1 and Th2 cells not only produce a different set of cytokines 
but also exhibit distinct functional properties. Deviation of type I  
and type II T cells and its negative effect on hematopoiesis in MDS  
in vitro was described [93]. In MDS, autologous T lymphocytes  
suppress both erythroid (CFU-E) and granulocytic (CFU-GM)  
progenitor cell growth in vitro [94,95]. CD8+ cells mediated this  
inhibition of hematopoiesis through the Major Histocompatibility 
Complex (MHC) class I molecules on target marrow cells. Removal of 
T cells from bone marrow often enhances colony formation [96,97].  
Successful treatment with Anti-Thymocyte Globulin (ATG)  
eliminates or reduces the myelosuppressive effect of these  
autologous T cells [98]. The decline of CD8+ cells in high-risk MDS is 
related to the expression of the negative co-stimulatory T-cell receptor  

Programmed Death-1 (PD-1) and its ligand PDL-1. Higher levels of 
PD-1/PDL-1 in bone marrow cells are associated with resistance to 
therapy and with a poorer prognosis. It has recently been shown that 
T cell expression of the immunoinhibitory receptor PD-1 is regulated 
by DNA methylation. The hypomethylating agents (azacitidine and 
decitabine; HMAs) induced PD-1 expression on T cells in the MDS 
microenvironment, thereby likely hampering the immune response 
against the MDS blasts. Combination therapy using HMAs with a 
PD-1 pathway inhibitor can solve this problem.

	 Oligoclonal expansion of T cells in MDS was reported using flow 
cytometry and spectratyping [99-101]. Cukrova et al. [38] questioned 
the auto-reactivity of T-cells in MDS and found a defective in vitro 
cytotoxicity of these cells. The frequencies of activated T-cells were not 
related to characteristics of MDS patients [102]. However, the absolute 
lymphocyte count at diagnosis showed the adverse prognostic impact 
in a large cohort of MDS patients suggesting an influence of the host 
immunity on the disease in MDS patients [103].

	 More than 50% of early stage MDS patients have anti-erythroid 
autoantibodies in their bone marrow cultures. These autoantibodies 
are mainly directed against autologous erythroblasts and correlated 
with increased apoptosis [35].

The Involvement of Regulatory T-cells 
(Treg) in the MDS Pathogenesis
	 Treg are known to influence both the autoimmunity and tumour 
progression [104]. Kordasti et al. [105] evaluated the absolute number  
of both CD4+ and CD8+ Treg in the peripheral blood of 52 MDS  
patients. A significant correlation was shown between increased 
number of  CD4+  Treg and several markers of disease aggressiveness 
(number of blasts in bone marrow, disease progression). None of 
these correlations was found for  CD8+ Treg [105]. Kotsiniadis et al. 
[106] confirmed the effect of Treg on antitumour immunity in course 
of MDS. They found different Treg pattern in early and late stage 
of MDS. Treg were impaired in function and also in bone marrow  
homing in early stage MDS. However, Treg retained their function in 
late stage disease but were expanded [106]. In a retrospective study, 
Mailloux et al., [107] investigated the phenotypic features of Treg  
subsets including naive, cental memory and effector memory cells, 
in association with MDS progression. They found a significant shift 
from a central memory phenotype toward an effector phenotype  
connected with a higher percentage of abnormal bone marrow  
myeloblasts. The analysis of effector memory Tregs using flow  
cytometry may be a simple and useful method to predict an early  
immune escape in MDS patients [108]. Moreover, Treg were  
significantly reduced in MDS patients responding to treatment. The 
recruitment of  CD8+ cytotoxic T-cells, the degree of dyserythropoi-
esis and the need for erythropoietin treatment were inversely related 
with the levels of Treg in the bone marrow of MDS patients [109].

Natural Killer Cells in MDS
	 Natural Killer (NK) cells interact with clonal cells. NK cytolytic  
function against different tumour targets was reduced in MDS  
patients in relation with increased risk of MDS, higher IPSS, abnormal 
karyotype and excess of blasts [110]. The percentage of NK cells was 
similar in MDS patients and in healthy controls. However, NK cells 
of MDS patients expressed increased levels of granzyme B and were  
 

Type of  autoimmune manifestation in 
MDS Examples

Systemic vasculitis

Giant-cell arteritis
Aortis

Medium- and small sized
Vessel vasculitis

Isolated autoimmune disorders
Cutaneous vasculitis

Polyarthritis
Polyneuropathy

Classical connective tissue disorders
Systemic lupus erythematosus

Raynaud´s disease
Polymyalgia rheumatic

Autoimmune hematological disorder Autoimmune hemolytic anemia
Immune thrombocytopenia

Asymptomatic immunological serological 
abnormalities

Positive antineutrophil antibody
Positive rheumatoid factor

Table 2: Autoimmune diseases associated with MDS.

Adapted according Oostvogels et al., [87]
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mediators of cytotoxicity against dysplastic hematopoietic  
precursors [111]. Marcondes et al. [112] explored the relationship  
between NK function and IL-32 expression. NK cells from 48 
MDS patients displayed impaired NK function utilizing distinct  
receptor-ligand interactions compared to healthy controls [111].  
Reduced NK function showed global defects in NK receptor  
signaling. NK cell receptor proteins G2D (NKG2D), DNAX-Acces-
sory Molecule-1 (DNAM-1) and natural cytotoxicity receptor NKp30 
are involved in activation of NK cells. CD226 (Cluster of Differentia-
tion 226), PTA1 (platelet and T cell activation antigen 1) or DNAM-1 
is a protein that in humans is encoded by the CD226 gene which is  
located on chromosome 18q22.3. Reduced expression of all these  
activating receptors were associated with impaired NK function 
in MDS [111,113,114]. NK cells from MDS patients fail to exhibit  
appropriate effector response. Based on low levels of IL-32 in CMML 
and high levels in MDS but suppressed cytotoxicity function in 
both diseases, IL-32 levels did not correlate with cytotoxic function.  
Abnormal stroma in MDS may play an inhibitory role in NK cell  
differentiation and development. Loss of immunosurveilanced may 
then lead to the accumulation of cells with DNA damage in the  
intermediate stages of MDS progression. NK cells become more  
dysfunctional as MDS progresses. However, the direct cause and effect 
are unknown.

Abnormal Levels of Inflammatory  
Cytokines and Chemokines in the 
Pereipheral Blood and Bone Marrow of 
MDS Patients

	 A variety of immune molecules, including IFN-γ, TNF-α and ILs 
produced by Antigen-Presenting Cells (APCs) and T lymphocytes 
generate a cytokine milieu that can lead to destruction of HSCs. The 
secretion of TNF-α and and other related cytokines, such as IFN-γ or 
IL-6, is higher in low-risk MDS, whereas these and other cytokines 
are down-regulated in high-risk cases [50]. The overproduction of 
IFN-γ, TNF-α and ILs is hypothesised to conribute to the pathogen-
esis of MDS. Elevated amount of these secreted factors impair stem/
progenitor cells that exhibit marked deficiencies in proliferation and 
differentiation, high levels of apoptosis and dysfunctional responses  
to growth factor stimulation [42,115-123].  IL-17 enhances the  
production of IFN-γ and TNF-α by bone marrow T lymphocytes from 
patients with lower risk MDS and may be involved in the pathogenesis 
of lower risk MDS [124].

	 Increased rates of intramedullary apoptosis are the main cause of 
the cytopenias in MDS. Apoptosis is initiated by the death receptor Fas 
and its specific ligand (Fas-L), which is overexpressed and correlates 
with the rate of apoptosis in MDS [125-131]. Fas/Apo-1 (CD95) and 
Fas-L are measured by flow cytometry, quantitative PCR of cDNA 
generated from mRNA and immunohistochemistry. TNF-α - Related 
Apoptosis - Inducing Ligand (TRAIL) is a member of the TNF family, 
which controls apoptosis by binding to agonistic receptors TRAIL-R1 
and TRAIL-R2 and decoy receptors TRAIL-R3 and TRAIL-R4. 
TRAIL is present in normal marrow in negligible amounts, but is  
constitutively expressed in MDS marrow [119]. Fas-associated  
death-domain-Like interleukin-1β-converting enzyme Inhibitory 
Protein (FLIP) is important in controlling apoptosis in normal cells. 
Isoforms of FLIP are products of alternative mRNA splicing and have  

pro-apoptotic or anti-apoptotic properties. In early MDS, the  
anti-apoptotic isoform of FLIP downregulated and apoptosis is  
higher than in MDS with excess blasts, where resistance to apoptosis  
was described [132]. TNF-α receptor TRAIL-R2, which transmits  
cytoprotective signals via transcription factor NF-κB is also increased 
in late MDS and exert anti-apoptotic signal through regulation of  
bcl-2 and bcl-xL [133,134].

	 However, various cytokines, such as TGF-β, IFN-α and TNF-α 
itself, activate the p38 Mitogen-Activated Protein Kinase (MAPK) 
downstream signaling pathway in hematopoietic stem and progeni-
tor cells, that increases apoptotic signaling in MDS bone marrow cells 
[135-140].

Toll-like Receptor Signaling and its  
Activation in MDS
	 The innate immune system is an evolutionarily conserved defense  
mechanism against pathogens which is implicated in the  
pathogenesis of MDS [65-68]. The Toll-Like Receptor (TLR) family  
(10 different TLRs in humans) plays a major role in the initial  
detection and subsequent elimination of foreign pathogens. This 
process is achieved through activation of intracellular signaling  
pathways, such as NF-κB and MAPK, which initiate a coordinated set 
of responses. Wei et al., [141] performed a genome-wide Chromatin 
Immunoprecipitation (CHIP) followed by Sequencing (Seq) analysis 
of H3K4me3 in MDS. This analysis identified multiple genes marked  
by increased H3K4me3 in bone marrow CD34+ cells. A large  
majority of the genes identified are known to be involved in  
TLR-mediated innate immunity signaling and NF-κB activation [141]. 
These authors showed in the same study that the histone H3K27me3 
demethylase JMJD3/ KDM6B containing Jumonji domain 3 (Jmjd3) is 
significantly overexpressed in MDS bone marrow CD34+ cells and has 
an important role in the regulation of expression of genes involved in 
innate immunity. Thus JMJD3 demethylase is capable to remove the 
trimethyl group from histone H3 lysine 27 [142].

	 Gene expression and mutational analysis of eight human TLRs 
were performed in a large cohort of MDS [143]. TLR1, TLR2 and 
TLR6 are significantly overexpressed in MDS bone marrow CD34+ 
cells. TLR1 and TLR6 are known to form functional heterodimers 
with TLR2. Deep genetic sequencing identified a rare genetic variant 
of TLR2 (F217S) present in 11% of bone marrow mononuclear cells 
of patients with MDS where is associated with NF-κB activation. The 
level of this variant is  in MDS is significantly higher than in normal  
population. Inhibition of TLR2 in cultured MDS bone marrow 
CD34+ cells from patients with lower risk of MDS results in increased  
formation of erythroid colonies. TLR2-mediated innate immune  
signaling has a role in pathophysiology of MDS and its targeting may 
have therapeutic potential.

	 Velegraki et al., [144] demonstrated increased expression of  
awide panel of genes involved in TLR4 signaling in bone marrow 
mononuclear cells. A gene expression microarray showed that TRAF6 
is overexpressed in MDS CD34+ cells in comparison with healthy  
controls [145]. Furthermore, DNA arrays revealed the amplification  
of the TRAF6 locus (chromosome 11p12) and the TIRAP locus  
(chromosome 11q24.2) in MDS [146,147].
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	 TLR4 is the receptor for Lipopolysaccharide (LPS), which  
induces the release of critical proinflammatory cytokines that are 
necessary to activate potent immune responses [148]. LPS/TLR4  
signaling has been intensively studied in the past years. Two pathways 
diverge downstream of TLR4, the Myeloid Differentiation primary 
response gene 88 (MyD88)-dependent and -independent pathways, 
resulting in the expression of inflamatory cytokines of IFN-induc-
ible genes. The MyD88-dependent pathway mediates a rapid and 
acute response, whereas MyD88-independent pathway is responsible 
for delayed response. MyD88 is a Toll-Interleukin 1 Receptor (TIR) 
containing adaptor protein that forms a complex on TIR domain of 
TLR4 (TIRAP). MyD88 recruits IL-1 Receptor Associated Kinase 4  
(IRAK4), which then recruits IRAK1, resulting in subsequent  
autophosphorylation and disassociation from the TLR4-MyD88  
complex. This complex then binds to TNF Receptor-Associated  
Factor (TRAF), key effector of the innate immune signaling complex. 
E3 ubiquitin ligase TRAF6 plays a key role in downstream activation 
of NF-κB. MyD88 is overexpressed in bone marrow progenitors of 
MDS and is associated with risk stratification and patient survival 
[60]. Rhyasen et al., [149,150] demonstrated IRAK1 upregulation in 
MDS bone marrow mononuclear cells and showed that targeting of 
IRAK1 is a therapeutic approach for MDS.

Bone Marrow Niche and its Involve-
ment in MDS
	 Hematopoietic stem and progenitor cells reside within the “bone 
marrow niche”, which is cellular and molecular microenvironment, 
which maintains and regulates stem cell self-renewal, differentiation 
and proliferation. Mesenchymal Stem Cells (MSCs) are primitive, 
non-hematopoietic stem cells that give rise to all of the various types  
of stromal cells that form bone marrow microenvironment  
[50,70-74,151-160].MSCshave important roles in hematopoiesis and 
immune regulation.

	 Several studies have indicated that impaired MSCs propagate 
MDS [50,70-74,151-160]. Among the MSC impairments is altered 
expression of Aurora Kinase Genes (AURK) with an important 
role in the regulation of G2/M phase of cell cycle, centrosomes and  
cytokinesis. The expression of AURK is highly upregulated in MSCs in 
MDS patients. AURK is also targeted by microRNAs (miR-let-7a and 
miR-let-7b). Let-7 is a family of tumor suppressor microRNAs that 
are frequently down-regulated in malignant cells. Let-7 microRNA  
family members are downregulated in MDS with spliceosome  
mutations [161]. Dysregulated expression of AURK leads to increased 
number of centrosomes, gain or loss of chromosomes causing cell 
death of normal cells and survival of malignant cells.

	 Hematopoietic stem cells and mesenchymal stem cells undergo 
changes in response to induction factors like TNF-α, Fas and TGF-β 
in the bone marrow niche of MDS. However, these stem cells do not 
originate from the same neoplastic clone and often harbor different 
chromosomal aberrations, suggesting distinct genetic origin of MDS 
niche [162].

	 MDS MSCs release higher amount of IL-6 than normal MSCs 
[163]. Il6 is secreted by macrophages in MDS bone marrow and  
induces apoptosis in hematopoietic cells [163]. MDS MSCs inhibit 
T-cell proliferation in vitro and suppress the immune system in vivo. 
MSCs inhibit the proliferation of T-cells in normal healthy controls  

through secretion of TGF-β and Hepatocyte Growth Factor (HGF). 
However, in MDS this secretion is decreased and MSCs may increase 
the proliferation of T-cells, thereby reducing immunosuppression, 
which results in increased apoptosis of MDS cells.

	 CXCL12, a member of the CXC family of chemokines, also 
known as Stromal Cell Derived Factor 1 (SDF1), is thgough to have 
an important role in cell migration in and out of the bone marrow  
microenvironment. It is produced by bone marrow stromal cells,  
including endothelial cells and fibroblasts [152]. CXCL12 expression 
is lower in normal bone marrow than in MDS bone marrow [71,164]. 
Upregulated CXCL12 expression increases homing signaling for 
CXCR4 expressing hematopoietic cells, resuting in their hyperprolif-
eration. This increased CXCL12 may be the reason for hypercellular 
bone marrow in MDS. CXCR4 high-expression group of MDS patients 
had a shorter overall survival time and shorter relapse-free survival 
time compared with those of the low-expression group [165,166]. 
There are positive correlations between CXCL12 and apoptosis in 
the low-grade MDS. For the high-grade MDS, there were positive  
correlations between CXCR4 and VEGF, and between CXCL12  
concentration and bone marrow Microvessel Density (MVD). 
The apoptosis is one of the hallmarks for low-grade MDS and the  
angiogenesis for high-grade MDS. A refined understanding of the 
roles that CXCL12/CXCR4 axis and its correlation with angiogenesis 
and apoptosis play in MDS will fuel the development of therapies that 
can be targeted to the CXCL12/CXCR4 axis.

	 Perhaps the most striking evidence that bone marrow MSCs 
may play an important role in the induction of MDS is based on a 
study in mice, where selective deletion in osteoprogenitors of Dicer1, 
a RNaseIII endonuclease, essential for miRNA biogenesis and RNA 
processing, resulted in development of myelodysplasia and secondary 
leukemia [167]. Dicer1 was not deleted in hematopoietic stem cells.

	 As stromal cells in the endosteal niche, osteoblasts have  
important regulatory role in MDS bone marrow microenvironment. 
Osteoblasts regulate the maturation and proliferation of osteoclasts 
that are involved in Hematopoietic Stem Cells (HSCs) support. Strong 
adhesion between HSCs and osteoblasts maintains HSCs in bone 
marrow. In response to stress, infection and bleeding, HSCs migrate 
to vascular niche, resulting in their proliferation and differentiation. 
Within MDS bone marrow niche, malignant HSCs are found both in 
vascular niche and endosteal niche.

Induction of Myelodysplasia by My-
eloid-Derived Suppressor Cells
	 Immature Myeloid-Derived Suppressor Cells (MDSCs), known 
to accumulate in tumor-bearing mice and cancer patients, are  
site-specific inflammatory and T cell immunosuppressive effector  
cells that contribute to cancer progression [168-172]. Their  
suppressive activity is in part driven by inflammation-associated  
signaling molecules, such as the Danger-Associated Molecular Pattern 
(DAMP) heterodimer S100A8/S100A9 (also known as myeloid-relat-
ed protein 8 /MRP8/ and MRP14, respectively), which interact with 
several innate immune receptors that are involved in the biology of 
MDSCs activation [46,74,173,174].

	 Human MDSCs lack most markers of mature immune cells 
(LIN-, HLA-DR-) but possess CD33, the prototypical member of  
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sialic acid-binding immunoglobulin-like super-family of lectins  
(Siglec) [169,175,176]. CD33 possesses an Immunoreceptor  
Tyrosine-based Inhibition Motif (ITIM) that is associated with  
immune suppression [175]. LIN-, HLA-DR-CD33+ MDSCs  
specifically accumulate in thebone marrow of MDS patients and  
impair hematopoiesis through a mechanism that involves S100A9 as 
an endogenous ligand for CD33-initiated signaling. S100A9 protein 
belongs to the family of S100 calcium-binding proteins that has an  
important role in inflammation. MDSCs did not expand in the S100A9 
protein deficiency [169].  S100A9 protein activation is through the 
NF-κB signaling pathway. Therefore, inhibitors of the NF-κB signaling 
pathway may reduce MDSCs levels and be useful therapeutic agents 
in conjunction with active immunotherapy targeted against the cell 
surface CD33 antigen in MDS patients.

	 Transmembrane protein CD33 is frequently expressed in cases  
of MDS and CMML with elevated blast count [177]. In normal  
individuals, expression of CD33 is associated with myeloid  
maturation and is present on myeloid but also on some lymphoid cells 
[178-180].The CD33 antigen is not expressed in normal hematopoiet-
ic stem cells [181,182].

Immunotherapeutic Approaches in 
MDS
	 More than 40 years ago the observation that some patients  
given immunosuppressive conditioning with Antithymocyte Globulin 
(ATG) followed by bone marrow transplantation sometimes achieved 
full recovery of their autologous marrow prompted Gluckman et 
al., [183] to use ATG in patients with severe aplastic anemia. Horse 
ATG and more recently rabbit ATG have been also used to treat MDS 
[184-187]. Factors affecting responses included younger age, low IPSS 
score, and the presence of HLA-DR15 antigens. Complete responses 
were more common in patients with hypocellular MDS.

	 The first prospective studies using cyclosporine in patients with 
MDS was reported by Jonasova et al. [188] who treated 14 cytopenic 
patients with refractory and anemia and variable marrow cellularity. 
All responders achieved transfusion independence which sustained 
for up to 30 months. A study in China reported a 62.5% response rate 
in 32 patients with RA, RARS, and RAEB treated with cyclosporine 
[189]. Renal failure occured in a minority and this treatment needs 
careful followup of renal function.

	 The CD52 binding monoclonal antibody CAMPATH1 or  
alemtuzumabhas been shown to have efficacy in MDS treatment. 
Neukirchen et al., [190] reported experience with alemtuzumab 
in nine MDS RCMD patients. All patients had a hypocellular bone 
marrow with a blast count <5 % and were classified as intermediate-1 
according to the IPSS. We found a response in five patients (60 %); 
three patients achieved a complete remission 3 and 6 months after the 
treatment with alemtuzumab, and two patients showed a haematolog-
ical improvement. Alemtuzumab was administered in a 10-mg dosage 
for 10 days. Treatment was well tolerated, and no severe side effects 
were observed. We could confirm the finding that the alemtuzumab is 
effective and save selected MDS patients. Due to the promising results, 
further studies, especially with regard to long-term survival and risk 
of leukemic progression should be initiated.

	 Gemtuzumab ozogamicin (Mylotarg; CMA-676; Wyeth  
Laboratories, Philadelphia, PA) is a monoclonal antibody  
conjugated with the highly potent anthracycline calicheamicin and 
targeted against the cell surface CD33 antigen [191]. Gemtuzumab 
binds to the CD33 antigen and is internalized and hydrolyzed. The  
cytotoxic part of the molecule, calicheamicin, enters the nucleolus, 
binds DNA strands and causes breaks in DNA, resulting in cell death. 
US Food and Drug Administration (FDA) approved gemtuzumab 
ozogamicin for therapy of relapsed AML expressing the CD33 antigen 
in patients over 60 years of age [192,193]. Raza et al., [194] carried 
out an open-label, randomized, phase II study to evaluate the safety 
and efficacy of gemtuzumab ozogamicinmonotherapy in patients with 
the IPSS classification intermediate-2 or high risk MDS. No complete 
responses or partial responses were observed. Combination therapy 
with gemtuzumab ozogamicin and Interleukin-11 (IL-11) and gemtu-
zumab ozogamicin monotherapy were studied in a randomized study 
conducted at MD Anderson Cancer Center in patients 65 years of 
age or older with previously untreated AML or high-risk MDS [195]. 
None of 6 MDS patients randomized to gemtuzumab ozogamicin 
only arm had complete response. 25% of patients in the combination  
therapy arm attained complete response. However, this higher  
complete response did not translate into a survival advantage.

	 Bispecific Killer Cell Engager (BIKE) targeting CD16 expressed 
on effector natural killer cells and CD33 is able to facilitate elimination 
CD33+ MDS targets and immunosuppressive MDSC targets and may 
be therapeutically beneficial for MDS patients [196].

	 Cytotoxic chemotherapy has non-specific effects due to  
treatment related toxicities and patients also often relapsed due 
to residual cancer cells that are inherently resistant to cytotoxic  
therapy. Cancer immunotherapy has the capacity to overcome these 
both problems, directing a specific cytotoxic immune response against 
cancer cells, particularly residual cancer cells.The potential of the  
immune systém to eliminate malignant cell sis also demonstrated by 
allogeneic bone marrow transplantation. Moreover, relapsed disease 
following allogeneic bone marrow transplantation can be eradicted 
by the infusion of doner derived lymphocytes [197].Graft versus host 
disease remains a major cause of morbidity and mortality following 
allogeneic transplantation. Allogeneic hematopoietic stem cell trans-
plantation remains the unique curative option for patients with MDS 
and AML at high risk of relapse.

	 The development of an effective cancer vaccine requires effective 
presentation of tumor antigen for effective T cell activation, and the 
concucurrent reversal of the immunosuppressive milleu in order to 
induce long-term immunity. Dendritic cells are bone marrow derived 
immune cells with potent antigen presenting abilities capable to in-
duce primary immunity [198]. Dendritic cells are  quantitatively and 
functionally deficient in MDS and AML patients [199]. Dendritic cells 
are good mediators of antileukemic aktivity and dendritic cells-vacci-
nation strategies may be convenient for patients at relapse after alloge-
neic stem cell transplantation [200].

	 Over-expressed or aberrantly expressed cellular proteins includ-
ing Wilms Tumor-1 (WT1) have been evaluated in phase I/II clinical 
trials of active immunotherapy with promising results [201]. The WT1 
gene located on chromosome 11p13 encodes a zinc finger transcrip-
tion factor that is important in cell growth and differentiation [202]. 
The WT1 gene expression is a good marker for diagnosis of disease 
progression of MDS [203]. WT1 is one of the antigens that triggers  
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T cell-mediated myelosuppression in MDS [204]. Vaccination with 
WT1 peptide was found to be safe and well tolerated in MDS patients 
with only 8% of patients (7 out of 88 total patients with MDS) [204]. 
The isolated WT1 peptide vaccination may be insufficient to generate 
long-term protective immunity [204]. Coupling a vaccine approach 
with sequential  blockadecheckpoint inhibition, such as cytotoxic T 
lymphocyte antigen 4 (CTLA-4) or PD1blockade, may be required to 
increase therapeutic benefit [205,206].

	 Recent findings regarding innate immune and inflammatory 
signals in MDS have been exploited for the development of novel 
therapeutic strategies in MDS. Preclinical studies with the specific 
inhibition of the activity or expression of TLR2 and its downstream 
effectors in primary MDS bone marrow cells by shRNA significantly 
improved differentiation, induced apoptosis and impaired their clonal  
generation potential, particularly in cells from lower risk MDS  
patients [50]. Opsona Therapeutics Ltd (Dublin, Ireland), the innate 
immune drug development company focused on novel therapeutic  
approaches to treat autoimmune, inflammatory diseases and  
oncology, announced the issuances of US Patent 8,734,794 and  
European Patent, EP2,451,842, which cover the Opsona developed 
antibody OPN-305, which is directed against TLR-2 (https://clinical-
trials.gov/ct2/show/NCT02363491). OPN-305 is the first humanized 
IgG4 monoclonal antibody against TLR2 and is studied in phase II 
clinical trial to improve erytroid differentiation of MDS bone marrow 
CD34+ cells.

	 Preclinical studies using MyD88 inhibition by inhibitory peptide 
(Invivogen, San Diego, CA), IL-8 inhibition by neutralizing antibody 
(ABCAM, Cambridge, MA) and IRAK1 inhibition by RNAint or 
specific inhibitor molecule were described [60,149]. Using a phys-
ics-based computational approach, Nimbus and their co-founding 
partner, Schrödinger Inc., uncovered the first truly selective small 
molecule IRAK4 (interleukin-1 receptor associated kinase 4) inhib-
itors. The three Nimbus novel compounds, ND-346, ND-2110 and 
ND-2158 demonstrated high selectivity against a panel of 334 kinas-
es, and potent in vitro inhibition of cytokine production in cells and 
whole blood. Roche´s Genentech unit licenced IRAK4 inhibitors from 
Nimbus.

	 SCIO-469 is a small-molecule  p38  mitogen-activated  pro-
tein (MAP) kinase inhibitor developed by Scios Inc as a potential oral 
therapy for inflammatory diseases. Preclinical studies with SCIO-469 
in MDS were described [137]. Phase II open-label study for patients 
with MDS has been completed (https://clinicaltrials.gov/ct2/show/
NCT00113893). ARRY-614, a potent, small-molecule dual p38/Tie2 
inhibitor, developed by Biopharma, is being studied in patients with 
IPSS low and intermediate-1 risk MDS (Phase 1 study, https://clinical-
trials.gov/show/NCT01496495).   In an initial dose-escalation study, 
using a powder-in-capsule formulation of ARRY-614, multi-lineage  
activity was observed. The most promising effects were seen in  
patients with thrombocytopenia and neutropenia, with transfusion 
independence frequently observed in platelet transfusion-dependent 
patients. ARRY-614 decreased the presence of phosphorylated p38 
MAPK in bone marrow and reduced bone marrow apoptosis in most  
MDS patients while efficiently decreasing the levels of some  
inflammatory factors and erythropoietin in patients’ plasma [207].

	 Curis, Inc. in collaboration with Aurigene designed an orally  
bioavailable small molecule, which binds with high affinity to PD-L1 
and disrupts the interaction between PD-L1 and PD1 receptors on T  

cells.  Preliminary results generated by Aurigene demonstrate that in 
in vitro studies, such small molecule PD-L1 antagonists can induce 
effective T cell proliferation and IFN-γ production by T cells that are 
specifically suppressed by PD-L1 in culture.  In addition, such small 
molecules also appear to have effects similar to anti-PD1 antibodies 
in in vivo tumor models, including IFN-γ production and inhibition 
of tumor growth.  The anti-tumor effect of the oral PD-L1 antagonist 
is similar to that seen with a known anti-PD1 antibody in this mouse 
model. In early trials in patients with hematological malignancies,  
antibodies targeting CTLA-4 or PD1signaling pathway have displayed 
significant efficacy with minimal toxicity in patients [206]. A safety 
and pharmacology study of Atezolizumab (MPDL3280A, Anti-PD-L1 
Antibody) administered alone or in combination with azacitidine 
in patients with myelodysplastic syndromes has been announced 
(https://www.clinicaltrials.gov/ct2/show/NCT02508870).

	 Sotatercept (formerly called ACE-011) is an investigational  
protein therapeutic that increases Red Blood Cell (RBC) levels by  
targeting molecules in the TGF-β superfamily. Acceleron is  
developing sotatercept in collaboration with Celgene Corporation 
for the treatment of anemia in rare blood diseases, including MDS.  
Sotatercept inhibits osteoclasts and promotes osteoblast survival 
in MDS bone marrow microenvironment. Phase 2 studies (https://
clinicaltrials.gov/ct2/show/NCT01736683) of Sotatercept for the  
treatment of anemia in low-or intermediate-1 risk myelodysplastic 
syndromes (MDS) or non-proliferative CMML is ongoing.

	 An oral small molecule inhibitor of TGF-β receptor I kinase,  
LY-2157299, galunisertib, is also being tested in a phase II trial (https://
clinicaltrials.gov/ct2/show/NCT02008318) in low and intermediate-1 
risk MDS [208].

	 Inhibitor of IDO1 is an inhibitor of the enzyme Indoleamine 
2,3-Dioxygenase (IDO). This inhibitor is proposed for the treatment 
of malignant diseases and has been used in phase II INCB024360 
study for patients with MDS (https://clinicaltrials.gov/ct2/show/
NCT01822691) [209].

Conclusion and Perspectives
	 Great progress has been made in recent years in understanding 
the role of innate immune deregulation in the MDS pathogenesis. 
Constitutively activated innate immune and inflammatory pathways 
affect directly hematopoiesis; lead to altered cytokine secretion and 
impact T-cell immunity. All these biological effects contribute to the 
development and progression of MDS. Innate immune deregulation  
could be induced by cellular stresses asociated with senescent  
changes, genomic instability and other genetic and epigenetic  
abnormalities that occur in hematopoietic cells with aging, but could 
be also initiated by abnormal cellular interactions in the bone marrow  
environment (niche). However, it is necessary to identify the  
endogenous ligands responsible for Toll-like receptors activation and 
the conditions that contribute to their release. This information will 
help to develop new effective therapeutic approaches.
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