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Besides I involved in thyroid function, other ChE have also 
essential physiological functions such as maintenance and regulation 
of cell function, gene regulation, activation or inhibition of enzymatic 
reactions, and regulation of membrane function [13]. Essential or 
toxic (Goitrogenic, Mutagenic, Carcinogenic) properties of ChE 
depend on tissue-specific need or tolerance, respectively [13]. 

Excessive accumulation or an imbalance of the ChE may disturb the 
cell functions and may result in cellular degeneration, death, benign 
or malignant transformation [13-15].

In our previous studies the complex of in vivo and in vitro 
nuclear analytical and related methods was developed and used 
for the investigation of I and other ChE contents in the normal 
and pathological thyroid [16-22]. Level of I in the normal thyroid 
was investigated in relation to age, gender and some non-thyroidal 
diseases [23,24]. After that, variations of ChE content with age in 
the thyroid of males and females were studied and age- and gender-
dependence of some ChE was observed [25-41]. Furthermore, a 
significant difference between some ChE contents in normal and 
cancerous thyroid was demonstrated [42-47].

To date, the etiology and pathogenesis of TA has to be considered 
as multifactorial. The present study was performed to clarify the role 
of some ChE in the TA etiology. Having this in mind, our aim was to 
assess the Silver (Ag), Bromine (Br), Calcium (Ca), Chlorine (Cl), 
Cobalt (Co), Chromium (Cr), Cooper (Cu), Iron (Fe), Mercury (Hg), 
I, Potassium (K), Magnesium (Mg), Manganese (Mn), Sodium (Na), 
Rubidium (Rb), Ammonium (Sb), Scandium (Sc), Selenium (Se), 
Strontium (Sr), and Zinc (Zn) contents in TA tissue using Energy 
Dispersive X-ray Fluorescent Analysis (EDXRF) combined with 
non-destructive Instrumental Neutron Activation Analysis with high 
resolution spectrometry of Sort-Lived Radionuclides (INAA-SLR) 
and  Long-Lived Radionuclides (INAA-LLR). A further aim was to 
compare the levels of these twenty ChE in the adenomatous thyroid 
with those in intact (normal) gland of apparently healthy persons.

Introduction
Thyroid Adenomas (TA) are homogenous, solitary, encapsulated 

benign tumors, more common in females, and have a good prognosis 
[1]. However, because there is a 20% possibility of malignant 
transformation, TA should be differentiated from other thyroid 
nodular diseases such as Nodular Goiter (NG) and Thyroid Cancer 
(TC). The distinguishing between the TA and TC is tricky, therefore 
new differential diagnostics and TA biomarkers are needed [2,3].

For over 20th century, there was the dominant opinion that NG, 
including TA, is the simple consequence of iodine (I) deficiency. 
However, it was found that NG is a frequent disease even in those 
countries and regions where the population is never exposed to 
I shortage [4]. Moreover, it was shown that I excess has severe 
consequences on human health and associated with the presence 
of thyroidal disfunctions and autoimmunity, nodular and diffuse 
goiters, adenomas and malignant tumors of gland [5-8]. It was also 
demonstrated that besides the I deficiency and excess many other 
dietary, environmental, and occupational factors are associated with 
the NG incidence [9-11]. Among them a disturbance of evolutionary 
stable input of many (ChE) in human body after industrial revolution 
plays a significant role in etiology of thyroidal disorders [12].
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	 Thyroid Adenomas (TA) are benign tumors, but there is a 20% 
possibility of malignant transformation. The distinguishing between 
the TA and Thyroid Cancer (TC) is tricky, therefore new TA biomark-
ers are needed. Furthermore, the role of Chemical Elements (ChE) 
in etiology and pathogenesis of TA is unclear. The aim of this explor-
atory study was to examine the content of Silver (Ag), Bromine (Br), 
Calcium (Ca), Chlorine (Cl), Cobalt (Co), Chromium (Cr), Cooper 
(Cu), Iron (Fe), Mercury (Hg), Iodine (I), Potassium (K), Magnesium 
(Mg), Manganese (Mn), Sodium (Na), Rubidium (Rb), Ammonium 
(Sb), Scandium (Sc), Selenium (Se), Strontium (Sr), and Zinc (Zn) in 
the normal and adenomatous thyroid.

	 Thyroid tissue levels of twenty Chemical Elements (ChE) were 
prospectively evaluated in 46 patients with TA and 105 healthy in-
habitants. Measurements were performed using non-destructive 
energy-dispersive X-Ray fluorescent analysis combined with instru-
mental neutron activation analysis with high resolution spectrometry 
of short-and long-lived radionuclides.  Tissue samples were divided 
into two portions. One was used for morphological study while the 
other was intended for ChE analysis. It was found that during an 
adenomatous transformation the mass fraction of Ag, Br, Cl, Cr, Hg, 
and Na in thyroid tissue significantly increased, whereas the levels of 
I, Mg, and Sr decrease. It was supposed that the changes in levels 
Ag, Br, Cl, Cr, Hg, I, Mg, Na, and Sr in thyroid tissue can be used as 
TA markers.
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values of ChE contents were used. Mean values of ChE contents were 
used in final calculation for the Br, Fe, Rb, and Zn mass fractions 
measured by two methods. Using Microsoft Office Excel, a summary 
of the statistics, including, arithmetic mean, standard deviation, 
standard error of mean, minimum and maximum values, median, 
percentiles with 0.025 and 0.975 levels was calculated for ChE 
contents. The difference in the results between two groups (normal 
thyroid and TA) was evaluated by the parametric Student’s t-test and 
non-parametric Wilcoxon-Mann-Whitney U-test.

All studies were approved by the Ethical Committees of the 
Medical Radiological Research Centre, Obninsk. All procedures 
performed in studies involving human participants were in accordance 
with the ethical standards of the institutional and/or national research 
committee and with the 1964 Helsinki declaration and its later 
amendments or comparable ethical standards.

Results
Depicts our data for Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, 

Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn mass fraction mass fractions in 
ten sub-samples of IAEA H-4 (Animal Muscle) and IAEA HH-1 
(Human Hair) certified reference material and the certified values of 
this material.

The comparison of our results for the Br, Fe, Rb, and Zn mass 
fractions (mg/kg, dry mass basis) in the normal human thyroid 
obtained by both EDXRF and INAA methods is shown in (Tables 
1-3).

Material and Methods
All patients suffered from TA (n=19, 16 females and 3 males, mean 

age M ± SD was 41 ± 11 years, range 22-55) were hospitalized in the 
Head and Neck Department of the Medical Radiological Research 
Centre. Thick-needle puncture biopsy of suspicious nodules of the 
thyroid was performed for every patient, to permit morphological 
study of thyroid tissue at these sites and to estimate their TE contents. 
For all patients the diagnosis has been confirmed by clinical and 
morphological results obtained during studies of biopsy and resected 
materials. Histological conclusion for all thyroidal lesions was the 
TA.

Normal thyroids for the control group samples were removed at 
necropsy from 105 deceased (mean age 44 ± 21 years, range 2-87), 
who had died suddenly. The majority of deaths were due to trauma. 
A histological examination in the control group was used to control 
the age norm conformity, as well as to confirm the absence of micro-
nodules and latent cancer.

All tissue samples were divided into two portions using a titanium 
scalpel [48]. One was used for morphological study while the other 
was intended for chemical element analysis. After the samples 
intended for ChE analysis were weighed, they were freeze-dried and 
homogenized [49].

The content of Br, Cu, Fe, Rb, Sr, and Zn were determined by 
EDXRF. Details of the relevant facility for this method, source with 
109Cd radionuclide, methods of analysis and the results of quality 
control were presented in our earlier publications concerning the 
EDXRF of ChE contents in human thyroid and prostate tissue 
[25,26,50].

The content of Br, Ca, Cl, I, K, Mg, Mn, and Na were determined 
by INAA-SLR using a horizontal channel equipped with the 
pneumatic rabbit system of the WWR-c research nuclear reactor 
(Branch of Karpov Institute, Obninsk). Details of used neutron flux, 
nuclear reactions, radionuclides, gamma-energies, spectrometric unit, 
sample preparation and measurement were presented in our earlier 
publications concerning the INAA-SLR of ChE contents in human 
thyroid, scalp hair, and prostate [27,28,51-53].

In a few days after non-destructive INAA-SLR all thyroid 
samples were repacked and used for INAA-LLR. A vertical channel 
of the WWR-c research nuclear reactor (Branch of Karpov Institute, 
Obninsk).was applied to determine the content of Ag, Co, Cr, Fe, Hg, 
Rb, Sb, Sc, Se, and Zn by INAA-LLR. Details of used neutron flux, 
nuclear reactions, radionuclides, gamma-energies, spectrometric unit, 
sample preparation and measurement were presented in our earlier 
publications concerning the INAA-LLR of ChE contents in human 
thyroid, scalp hair, and prostate [29,30,51,54].

To determine contents of the ChE by comparison with a known 
standard, Biological Synthetic Standards (BSS) prepared from 
phenol-formaldehyde resins were used [55]. In addition to BSS, 
aliquots of commercial, chemically pure compounds were also used 
as standards. For each method ten certified reference material IAEA 
H-4 (animal muscle) and IAEA HH-1 (human hair) sub-samples were 
treated and analyzed in the same conditions that thyroid samples to 
estimate the precision and accuracy of results.

A dedicated computer program for INAA mode optimization was 
used [56]. All thyroid samples were prepared in duplicate, and mean 

Element
IAEA H-4

animal muscle
This work 

results
IAEA HH-1
human hair

This work
 Results

Ag - 0.033 ± 0.008 0.19 ± 0.06b 0.18 ± 0.05

Br 4.1 ± 1.1a 5.0 ± 09 4.2 ± 2.1b 3.9 ± 1.6

Ca 188 ± 58b 238 ± 59 522 ± 160a 525 ± 42

Cl 1890 ± 130b 1950 ± 230 2265 ± 478a 2210 ± 340

Co 0.0027 ± 0.0010b 0.0034 ± 0.0008 5.97 ± 0.42a 5.4 ± 1.1

Cr 0.06 ± 0.04b 0.071 ± 0.010 0.27 ± 0.16b ≤ 0.3

Cu 4.0 ± 1.0a 3.9 ± 1.1 10.2 ± 3.2a -

Fe 49.1 ± 6.5a 47.0 ± 1.0 23.7 ± 3.1a 25.1 ± 4.3

Hg 0.014 ± 0.005b 0.015 ± 0.004 1.70 ± 0.09a 1.54 ± 0.14

I 0.08 ± 0.10b < 1.0 20.3 ± 8.9b 19.1 ± 6.2

K 15840 ± 1440a 16200 ± 3800 9.2 ± 5.2b 10.7 ± 4.0

Mg 1050 ± 140a 1100 ± 190 62.0 ± 9.6b 64.7 ± 18.6

Mn 0.52 ± 0.08a 0.55 ± 0.11 0.85 ± 0.25a 0.93 ± 0.16

Na 2060 ± 330a 2190 ± 140 12.6 ± 4.8b 14.0 ± 2.7

Rb 18.7 ± 3.5a 22 ± 4 0.94 ± 0.09b 0.89 ± 0.17

Sb 0.0056 ± 0.0031b 0.0061 ± 0.0021 0.031 ± 0.010b 0.033 ± 0.009

Sc 0.0059 ± 0.0034b 0.0015 ± 0.0009 - -

Se 0.28 ± 0.08a 0.281 ± 0.014 0.35 ± 0.02a 0.37 ± 0.08

Sr - < 1 0.82 ± 0.16b 1.24 ± 0.57

Zn 86.3 ± 11.5a 91 ± 2 174 ± 9a 173 ± 17

Table 1: EDXRF, INAA-SLR and INAA-LLR data of chemical element contents in 
certified reference material IAEA H-4 (animal muscle) and IAEA HH-1 (human 
hair) compared to certified values ((mg/kg, dry mass basis).

M – arithmetical mean, SD – standard deviation, a – certified values, b – information 
values.
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Presents certain statistical parameters (Arithmetic Mean, Standard 
Deviation, Standard Error of Mean, Minimal and Maximal Values, 
Median, Percentiles with 0.025 and 0.975 Levels) of the Ag, Br, Ca, 
Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn 
mass fraction mass fraction in normal and adenomatous thyroid.

The comparison of our results with published data for Ag, Br, Ca, 
Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn 
mass fraction in normal and adenomatous thyroid [57-82]. Is shown 
in (Table 4).

The ratios of means and the difference between mean values of 
Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc,  
 
 
 

Element EDXRF (M1) INAA (M2) ∆=[(M1 – M2)/M1] ∙100%

Br 13.9 ± 12.0 16.3 ± 11.6 (INAA-SLR) -17.3

Fe 222 ± 102 225 ± 100 (INAA-LLR) -1.4

Rb 9.03 ± 6.17 7.37 ± 4.10 (INAA-LLR) 18.4

Zn 112 ± 44 98 ± 42 (INAA-LLR) 12.5

Table 2: Comparison of the mean values (M ± SD) of the chemical element mass 
fractions (mg/kg, dry mass basis) in the normal human thyroid obtained by both 
EDXRF and INAA methods.

M – arithmetic mean, SEM – standard error of mean.

Tissue Element Mean SD SEM Min Max Median P 0.025 P 0.975

Normal Ag 0.0151 0.0140 0.0016 0.0012 0.0800 0.0121 0.0017 0.0454

n=105 Br 14.9 11.0 1.2 1.90 54.1 11.6 2.56 49.3

Ca 1711 1022 109 414 6230 1458 460 3805

Cl 3400 1452 174 1030 6000 3470 1244 5869

Co 0.0399 0.0271 0.0030 0.0046 0.140 0.0327 0.0134 0.124

Cr 0.539 0.272 0.032 0.130 1.30 0.477 0.158 1.08

Cu 4.23 1.52 0.18 0.500 7.50 4.15 1.57 7.27

Fe 223 93 10 51.0 512 221 74.2 433

Hg 0.0421 0.0358 0.0041 0.0065 0.180 0.0304 0.0091 0.150

I 1841 1027 107 114 5061 1695 230 4232

K 6071 2773 306 1740 14300 5477 2541 13285

Mg 285 139 17 66.0 930 271 81.6 541

Mn 1.35 0.54 0.07 0.510 4.18 1.32 0.537 2.23

Na 6702 1764 178 3050 13453 6690 3855 10709

Rb 8.16 4.55 0.49 1.66 29.4 7.37 3.08 19.3

Sb 0.111 0.072 0.008 0.0047 0.308 0.103 0.0117 0.280

Sc 0.0046 0.0038 0.0008 0.0002 0.0143 0.0042 0.00035 0.0131

Se 2.32 1.29 0.14 0.439 5.80 2.01 0.775 5.65

Sr 4.55 3.22 0.37 0.100 13.7 3.70 0.483 12.3

Zn 105.1 40.1 4.3 7.10 221 104.9 39.2 186

Adenoma Ag 0.211 0.201 0.056 0.0115 0.679 0.198 0.0124 0.627

n=19 Br 317 334 111 11.6 871 189 21.3 844

Ca 1143 1135 342 52 3582 650 110 3353

Cl 7722 3785 1262 1757 13824 9085 2043 13179

Co 0.0673 0.0486 0.0140 0.0083 0.159 0.0478 0.0104 0.149

Cr 1.40 0.85 0.25 0.259 2.79 1.25 0.265 2.70

Cu 17.6 14.0 5.7 4.10 35.2 13.8 4.28 35.0

Fe 526 678 175 52.3 2563 268 52.8 2158

Hg 0.796 0.522 0.145 0.149 1.72 0.817 0.162 1.65

I 962 1013 232 131 3906 476 170 3591

K 5137 2474 686 797 8436 5741 937 8216

Mg 200 131 36 15.0 397 269 15.0 376

Mn 1.60 1.77 0.51 0.100 5.54 0.650 0.210 5.08

Na 9072 3952 1096 2319 16414 9100 2728 15822

Rb 8.28 3.68 0.57 1.00 16.6 7.58 2.53 15.8

Sb 0.149 0.124 0.036 0.0449 0.466 0.105 0.0449 0.419

Sc 0.0174 0.0273 0.0090 0.0003 0.0900 0.0060 0.0003 0.0758

Se 2.36 0.90 0.24 0.720 3.57 2.25 0.929 3.52
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Sr 2.78 2.04 0.55 0.420 6.66 2.26 0.544 6.47

Zn 123 52 13 48.0 251 124 52.9 225

Table 3: Some statistical parameters of Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn mass fraction (mg/kg, dry mass basis) in normal and adeno-
matous thyroid.

M – arithmetic mean, SD – standard deviation, SEM – standard error of mean, Min – minimum value, Max – maximum value, P 0.025 – percentile with 0.025 level, P 0.975 – per-
centile with 0.975 level.

Tissue Published data [Reference] This work 

Element
Median of

 means
(n)*

Minimum of
 means 

M or M ± SD, (n)**

Maximum of
 means 

M or M ± SD, (n)** 

Males and females 
M ± SD

Norm

Ag 0.21 (12) 0.000784 (16) [57] 1.20 ± 1.24 (105) [58] 0.0151 ± 0.0140

Br 18.1 (11) 5.12 (44) [57] 284 ± 44 (14) [59] 14.9 ± 10.9

Ca 1600 (17) 840 ± 240  (10) [60] 3800 ± 320  (29) [60] 1692 ± 1022

Cl 6800 (5) 804 ± 80  (4) [61] 8000 (-) [62] 3400 ± 1452

Co 0.306 (25) 0.016  (66) [63] 70.4 ± 40.8  (14) [59] 0.0399 ± 0.0271

Cr 0.69 (17) 0.088 (83) [64] 24.8 ± 2.4  (4) [61] 0.539 ± 0.272

Cu 5.94 (61) 0.16 (83)  [64] 220 ± 22 (10) [61] 4.23 ± 1.52

Fe 252 (21) 56 (120)  [65] 3360 (25) [66] 223 ± 93

Hg 0.08 (13) 0.0008 ± 0.0002 (10)  [60] 396 ± 40 (4) [61] 0.0421 ± 0.0358

I 1888 (95) 159 ± 8 (23) [67] 5772 ± 2708  (50) [68] 1841 ± 1027

K 4400 (16) 46.4 ± 4.8 (4) [61]  6090 (17) [69] 6071 ± 2773

Mg 390 (16) 3.5 (-) [70] 1520 (20) [71] 285 ± 139

Mn 1.62 (40) 0.076  (83) [64] 69.2 ± 7.2 (4) [61] 1.35 ± 0.58

Na 8000 (9) 438 (-) [72] 10000 ± 5000 (11) [73] 6702 ± 1764

Rb 7.8 (9) ≤ 0.85 (29) [60] 294 ± 191 (14) [59] 8.20 ± 4.54

Sb 0.15 (10) 0.040 ± 0.003 (-) [72] ≤ 12.4(-) [74] 0.111 ± 0.072

Sc 0.009 (4) 0.0018 ± 0.0003 (17)  [75] 0.014 ± 0.005 (10) [60] 0.0046 ± 0.0038

Se 2.32 (21) 0.436 (40)  [63] 756 ± 680 (14) [59] 2.32 ± 1.29

Sr 0.61 (9) 0.055 (83) [64] 46.8 ± 4.8 (4) [61] 4.55 ± 3.22

Zn 110 (56) 2.1 (-) [70] 820 ± 204 (14) [59] 105 ± 40

Adenoma

Ag 0.110 (1) 0.110 ± 0.045 (19) [76] 0.110 ± 0.045 (19) [76] 0.211 ± 0.201

Br 38 (4) 11 (5) [77] 777 (1) [78] 317 ± 334

Ca 2298(4) 900  (1) [60] 3500 (1) [60] 1143 ± 1135

Cl - - - 7722 ± 3785

Co 46.4 (1) 46.4 ± 4.8 (4) [61] 46.4 ± 4.8 (4) [61] 0.0673 ± 0.0486

Cr 76 (2) 6.00 ± 5.32 (9) [79] 146 ± 14 (4) [61] 1.40 ± 0.85

Cu 11.0 (7) 1.24 (46) [80] 29 (5) [59] 17.6 ± 14.0

Fe 566 (3) 54.6 ± 36.1 (5) [77] 2100 ± 208 (4) [61] 526 ± 678

Hg - - - 0.796 ± 0.522

I 640(13) 80 (1) [77] 2800 (1) [81] 962 ± 1013

K 3650 (3) 72,8 ± 7,2  (4) [61] 5600 (1) [77] 5137 ± 2474

Mg - - - 200 ± 131

Mn 1.28 (4) 0.40 (46) [80] 57,6 ± 6,0 (4) [61] 1.60 ± 1.77

Na - - - 9072 ± 3952

Rb 7.0 (1) 7.0 (10) [75] 7.0 (10) [75] 8.28 ± 3.68

Sb - - - 0.149 ± 0.124

Sc - - - 0.0174 ± 0.0273
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Se, Sr, and Zn mass fractions in normal and adenomatous thyroid are 
presented in (Table 5).

Discussion
Precision and accuracy of results

A good agreement of our results for the Ag, Br, Ca, Cl, Co, Cr, Cu, 
Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn mass fractions 
with the certified values of CRM IAEA H-4 and CRM IAEA HH-1 
(Table 1) as well as the similarity of the means of the Br, Fe, Rb, and 
Zn mass fractions in the normal human thyroid determined by both 
EDXRF and INAA methods (Table 2) demonstrates an acceptable 
precision and accuracy of the results obtained in the study and 
presented in (Tables 3-5).

The mean values and all selected statistical parameters were 
calculated for twenty ChE (Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, 
Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn) mass fractions (Table 3). The  

 
 
 

 
mass fraction of Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, 
Rb, Sb, Sc, Se, Sr, and Zn were measured in all, or a major portion of 
normal and adenomatous tissue samples.

Comparison with published data

Values obtained for Br, Ca, Cl, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, 
Rb, Sb, Sc, Se, and Zn contents in the normal human thyroid (Table 4) 
agree well with median of mean values reported by other researches 
[57-92]. The obtained means for Ag and Co were almost one order 
of magnitude lower whereas mean for Sr was 7.46 times higher than 
median of previously reported means, but, nevertheless, inside the 
range of means (Table 4). A number of values for ChE mass fractions 
were not expressed on a dry mass basis by the authors of the cited 
references. However, we calculated these values using published data 
for water (75%) [83] and ash (4.16% on dry mass basis) [84] contents 
in thyroid of adults.

Data cited in (Table 4) for normal thyroid also includes samples 
obtained from patients who died from different non-endocrine 
diseases. In our previous study it was shown that some non-endocrine 
diseases can effect on ChE contents in thyroid [24]. Moreover, in 
many studies the “Normal” thyroid means a visually non-affected 
tissue adjacent to benign or malignant thyroidal nodules. However, 
there are no data on a comparison between the ChE contents in 
such kind of samples and those in thyroid of healthy persons, which 
permits to confirm their identity.

In adenomatous thyroid (Table 4) our results were comparable with 
published data for Ag, Ca, Cu, Fe, I, K, Mn, Rb, Se, and Zn contents. 
The obtained means for Br, Co, Cr, and Sr were approximately one 
order of magnitude lower median of previously reported means. The 
obtained mean for Br was inside the range of reported means, whereas 
the obtained mean for Cr was lower the minimal published mean for 
this element (Table 4). The data on Ag, Co, Rb, and Sr content in TA 
were found in one paper.  No published data referring Cl, Hg, Mg, Na, 
Sb, and Sc contents of adenomatous thyroid were found.

The range of means of Ag, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, 
Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn level reported in the literature 
for normal and for adenomatous thyroid vary widely (Table 4). This 
can be explained by a dependence of ChE content on many factors, 
including “Normality” of thyroid samples (see above),  the region 
of the thyroid, from which the sample was taken, age, gender, 
ethnicity, mass of the gland, and the adenoma stage, histology and 
functional activity. Not all these factors were strictly controlled in 
cited studies. However, in our opinion, the leading causes of inter-
observer variability can be attributed to the accuracy of the analytical 
techniques, sample preparation methods, and inability of taking 
uniform samples from the affected tissues.

It was insufficient quality control of results in these studies. In 
many scientific reports, tissue samples were ashed or dried at high 

Se 1.88 (4) 0.316 (46) [80] 3,16 ± 2,88 (9) [79] 2.36 ± 0.90

Sr 27.2 (1) 27.2 ± 2.4 (4) [61] 27.2 ± 2.4 (4) [61] 2.78 ± 2.04

Zn 68.5 (8) 21.0 (130) [82] 330 ± 282 (9) [79] 123 ± 52

Table 4: Median, minimum and maximum value of means of twenty chemical element contents in the normal and adenomatous thyroid according to data from the literature in 
comparison with our results (mg/kg, dry mass basis).

M – arithmetic mean, SD – standard deviation, (n)* – number of all references, (n)** – number of samples.

Table 5: Differences between mean values (M ± SEM) of Ag, Br, Ca, Cl, Co, Cr, Cu, 
Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn mass fraction (mg/kg, dry mass 
basis) in normal and adenomatous thyroid.

M – arithmetic mean, SEM – standard error of mean, Statistically significant values 
are in bold.

Element

Thyroid tissue Ratio

Norm
n=105

Adenoma
n=19

Student’s 
t-test

p≤

U-test
p

Adenoma
to Norm

Ag 0.0151 ± 0.0016 0.211 ± 0.056 0.0044 ≤ 0.01 14.0

Br 14.9 ± 1.2 317 ± 111 0.026 ≤ 0.01 21.3

Ca 1711 ± 109 1143 ± 342 0.139 > 0.05 0.67

Cl 3400 ± 174 7722 ± 1262 0.0089 ≤ 0.01 2.27

Co 0.0399 ± 0.0030 0.0673 ± 0.0140 0.080 > 0.05 1.69

Cr 0.539 ± 0.032 1.40 ± 0.25 0.0048 ≤ 0.01 2.60

Cu 4.23 ± 0.18 17.6 ± 5.7 0.067 > 0.05 4.16

Fe 223 ± 10 526 ± 175 0.106 > 0.05 2.36

Hg 0.0421 ± 0.0041 0.796 ± 0.145 0.00022 ≤ 0.01 18.9

I 1841 ± 107 962 ± 232 0.0020 ≤ 0.01 0.52

K 6071 ± 306 5137 ± 686 0.231 > 0.05 0.85

Mg 285 ± 17 200 ± 36 0.049 ≤ 0.01 0.70

Mn 1.35 ± 0.07 1.60 ± 0.51 0.647 > 0.05 1.19

Na 6702 ± 178 9072 ± 1096 0.053 ≤ 0.05 1.35

Rb 8.16 ± 0.49 8.28 ± 0.57 0.822 > 0.05 1.01

Sb 0.111 ± 0.008 0.149 ± 0.036 0.320 > 0.05 1.34

Sc 0.0046 ± 0.0008 0.0174 ± 0.0090 0.171 > 0.05 3.78

Se 2.32 ± 0.14 2.36 ± 0.24 0.876 > 0.05 1.02

Sr 4.55 ± 0.37 2.78 ± 0.55 0.012 ≤ 0.01 0.61

Zn 105.1 ± 4.3 123 ± 13 0.195 > 0.05 1.17
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temperature for many hours. In other cases, thyroid samples were 
treated with solvents (Distilled Water, Ethanol, Formalin etc). There is 
evidence that during ashing, drying and digestion at high temperature 
some quantities of certain ChE are lost as a result of this treatment. 
That concerns not only such volatile halogen as Br, but also other ChE 
investigated in the study [49,85,86].

Effect of adenomatous transformation on ChE contents

From (Table 5), it is observed that in adenomatous tissue the mass 
fraction of Ag, Br, Cl, Cr, Hg, and Na are approximately 14.0, 21.3, 
2.27, 2.60, 18.9, and 1.35 times, respectively, significantly higher 
than in normal tissues of the thyroid. In contrast, the mass fractions 
of I, Mg, and Sr are 48%, 30%, and 39%, respectively, lower. Thus, if 
we accept the ChE contents in thyroid glands in the control group as a 
norm, we have to conclude that with an adenomatous transformation 
the levels of Ag, Br, Cl, Cr, Hg, I, Mg, Na, and Sr in thyroid tissue 
significantly changed.

Role of ChE in adenomatous transformation of the thyroid

Characteristically, elevated or reduced levels of ChE observed in 
adenomatous thyroid are discussed in terms of their potential role in 
the initiation and promotion of thyroid adenoma. In other words, using 
the low or high levels of the ChE in adenomatous tissues researchers 
try to determine the role of the deficiency or excess of each ChE in 
TA etiology. In our opinion, abnormal levels of many ChE in TA 
could be and cause, and also effect of adenomatous transformation. 
From the results of such kind studies, it is not always possible to 
decide whether the measured decrease or increase in ChE level in 
pathologically altered tissue is the reason for alterations or vice versa.

Silver: Ag is a ChE with no recognized trace metal value in the 
human body [87]. Ag in metal form and inorganic Ag compounds 
ionize in the presence of water, body fluids or tissue exudates. The 
silver ion Ag+ is biologically active and readily interacts with proteins, 
amino acid residues, free anions and receptors on mammalian and 
eukaryotic cell membranes [88]. Besides such the adverse effects 
of chronic exposure to Ag as a permanent bluish-gray discoloration 
of the skin (Argyria) or eyes (Argyrosis), exposure to soluble Ag 
compounds may produce other toxic effects, including liver and 
kidney damage, irritation of the eyes, skin, respiratory, and intestinal 
tract, and changes in blood cells [89]. More detailed knowledge of the 
Ag toxicity can lead to a better understanding of the impact on human 
health, including thyroid function.

Bromine: This is one of the most abundant and ubiquitous of 
the recognized ChE in the biosphere. Inorganic bromide is the ionic 
form of bromine which exerts therapeutic as well as toxic effects. An 
enhanced intake of bromide could interfere with the metabolism of 
iodine at the whole-body level. In the thyroid gland the biological 
behavior of bromide is more similar to the biological behavior of 
iodide [90].

In our previous studies, we found a significant age-related increase 
of Br content in human thyroid [25-28,31,32]. Therefore, a goitrogenic 
and, probably, carcinogenic effect of excessive Br levels in the thyroid 
of old females was assumed. On the one hand, elevated levels of Br 
in TA tissues, observed in the present study, supports this conclusion. 
But, on the other hand, bromide compounds, especially Potassium 
Bromide (KBr), Sodium Bromide (NaBr), and ammonium bromide 
(NH4Br), are frequently used as sedatives in Russia [91]. It may be 
the reason for elevated levels of Br in specimens of patients with TA. 

Chlorine: Cl is a ubiquitous, extracellular electrolyte essential to 
more than one metabolic pathway.  Cl exists in the form of chloride 
in the human body. In the body, it is mostly present as sodium 
chloride. Therefore, as usual, there is a correlation between Na and 
Cl contents in tissues and fluids of human body.  It is well known 
that Cl mass fractions in samples depend mainly on the extracellular 
water volume, including the blood volumes, in tissues [92]. Colloid 
is the extracellular liquid.  Thus, it is possible to speculate that TA 
are characterized by an increase of the mean value of the Cl mass 
fraction because the level of colloid is higher than that in normal 
thyroid tissue.

Chromium: The Cr-compounds are cytotoxic, genotoxic, 
and carcinogenic in nature. Some Cr forms, including hexavalent 
chromium (Cr6+), are toxicants known for their carcinogenic effect in 
humans. They have been classified as certain or probable carcinogens 
by the International Agency for Research on Cancer (IARC) [93]. 
Furthermore, it was found that an elevated intake of Cr may induce 
functional and cellular damage in animal and human thyroid [94,95]. 
Besides Reactive Oxygen Species (ROS) generation, oxidative stress, 
and cytotoxic effects of Cr exposure, a variety of other changes 
like DNA damage, increased formation of DNA adducts and DNA-
protein cross-links, DNA strand breaks, chromosomal aberrations 
and instability, disruption of mitotic cell division, chromosomal 
aberration, premature cell division, S or G2/M cell cycle phase arrest, 
and carcinogenesis also occur in humans or experimental test systems 
[96]. In this connection our finding of elevated Cr content in the 
adenomatous thyroid confirms the role of this ChE in the TA etiology.

Mercury: Hg is one of the most dangerous environmental 
pollutants [97]. The growing use of this metal in diverse areas 
of industry has resulted in a significant increase of environment 
contamination and episodes of human intoxication. Hg has been 
classified as certain or probable carcinogen by the IARC [98]. For 
example, in Hg polluted area thyroid cancer incidence was almost 2 
times higher than in in adjacent control areas [99].

Negative effects of Hg are due to the interference of this metal in 
cellular signaling pathways and protein synthesis during the period of 
development. Since it bonds chemically with the sulfur hydride groups 
of proteins, it causes damage to the cell membrane and decreases 
the amount of RNA [100]. Moreover, it was shown that Hg may be 
involved in four main processes that lead to genotoxicity: generation 
of free radicals and oxidative stress, action on microtubules, influence 
on DNA repair mechanisms and direct interaction with DNA 
molecules [101]. Thus, the present study suggests that an elevated 
level of Hg in thyroid may be involved in TA etiology.

Iodine: Compared to other soft tissues, the human thyroid gland 
has higher levels of I, because this element plays an important role 
in its normal functions, through the production of thyroid hormones 
(Thyroxin and Triiodothyronine) which are essential for cellular 
oxidation, growth, reproduction, and the activity of the central and 
autonomic nervous system. The I deficiency is one of the main 
(but not only) cause of adenomatous transformation, which leads 
to a significant reduction in I content associated with functional 
characteristics of the human thyroid tissue.

Magnesium: Mg is abundant in the human body. This ChE 
is essential for the functions of more than 300 enzymes (e.g. 
Alkaline Phosphatases, ATP-Ases, Phosphokinases, The Oxidative 
Phosphorylation Pathway). It plays a crucial role in many cell 

https://en.wikipedia.org/wiki/Potassium_bromide
https://en.wikipedia.org/wiki/Potassium_bromide
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functions such as energy metabolism, protein and DNA syntheses, 
and cytoskeleton activation. Moreover, Mg plays a central role in 
determining the clinical picture associated with thyroid disease [102].

Sodium: Na is mainly an extracellular electrolyte and its elevated 
level in TA might link with a high content of colloid in adenomatous 
tissue (see Chlorine).

Strontium: A reduced Sr content in TA was also indicated by 
Reddy et al. [61]. However, the role of Sr in the thyroid function 
is unknown and we can’t explain why the Sr level in adenomatous 
tissues is 39% lower than in normal thyroid.

Our findings show that mass fraction of Ag, Br, Cl, Cr, Hg, I, Mg, 
Na, and Sr are significantly different in TA as compared to normal 
thyroid tissues (Table 5). Thus, it is plausible to assume that levels of 
these ChE in thyroid tissue can be used as TA markers. However, this 
subjects needs in additional studies.

Limitations
This study has several limitations. Firstly, analytical techniques 

employed in this study measure only twenty ChE (Ag, Br, Ca, Cl, 
Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sr, and Zn) 
mass fractions. Future studies should be directed toward using other 
analytical methods which will extend the list of ChE investigated 
in normal and adenomatous thyroid. Secondly, the sample size of 
TA group was relatively small. It was not allow us to carry out the 
investigations of ChE contents in TA group using differentials like 
gender, histological types of adenoma, functional status of benign 
neoplasm, stage of disease, and dietary habits of healthy persons and 
patients with TA. Lastly, generalization of our results may be limited 
to Russian population. Despite these limitations, this study provides 
evidence on adenoma-specific tissue Ag, Br, Cl, Cr, Hg, I, Mg, Na, 
and Sr level alteration and shows the necessity to continue ChE 
research of TA.

Conclusion
In this work, ChE measurements were carried out in the tissue 

samples of normal thyroid and TA using three non-destructive 
instrumental analytical methods: EDXRF, INAA-SLR, and INAA-
LLR. It was shown that the combination of these methods is an 
adequate analytical tool for the non-destructive determination of Ag, 
Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, 
Sr, and Zn content in the tissue samples of human thyroid, including 
needle-biopsy cores. It was observed that in adenomatous tissues 
content of Ag, Br, Cl, Cr, Hg, and Na significantly increased whereas 
the levels of I, Mg, and Sr decreased in a comparison with the normal 
thyroid tissues. In our opinion, the increase in levels of Ag, Br, Cl, 
Cr, Hg, and Na, as well as the decrease in levels of I, Mg, and Sr in 
adenomatous tissue might demonstrate an involvement of these ChE 
in etiology and pathogenesis of TA. It was supposed that the changes 
in levels Ag, Br, Cl, Cr, Hg, I, Mg, Na, and Sr in thyroid tissue can be 
used as TA markers.
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